DOI: 10.1002/adsc.200700247

Highly Efficient Ethylene/Cyclopentene Copolymerization with Exclusive 1,2-Cyclopentene Incorporation by (Cyclopentadienyl)-(ketimide)titanium(IV) Complex–MAO Catalysts

Jingyu Liu^a and Kotohiro Nomura^{a,*}

^a Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan

Phone: (+81)-743-72-6041; fax: (+81)-743-72-6049; e-mail: nomurak@ms.naist.jp

Received: May 20, 2007

Supporting information for this article is available on the WWW under http://asc.wiley-vch.de/home/.

Abstract: The (cyclopentadienyl)-(ketimide)titanium(IV) complex (t-BuC₅H₄)TiCl₂ $[N=C(t-Bu)_2]$ exhibited remarkable catalytic activities (1.99–3.16×10⁴ kg polymer/mol Ti·h) with efficient cyclopentene incorporation in ethylene/cyclopentene copolymerization in the presence of methylaluminoxane (MAO). The polymerization took place with exclusive 1,2-cyclopentene incorporation, affording high molecular weight (alternating) copolymers (cyclopentene < 43.6 mol %) with uniform distributions. The effect of the cyclopentadienyl fragment (Cp') in the copolymerization using $Cp'TiCl_2[N=C(t-Bu)_2]$ [Cp'=indenyl, $t-BuC_5H_4$, C_5Me_5 (Cp*), C_5H_5 (Cp)] has been explored in the presence of MAO; the Cp' plays an important key role in terms of both activity and efficient cyclopentene incorporation.

Keywords: copolymerization; cyclopentadienyl ligands; cyclopentene; ethylene; titanium

Certain cyclic olefin copolymers are known to be amorphous materials with a promising combination of high transparency in the UV-Vis region along with humidity- and heat-resistance. [1] Therefore, the transition metal-catalyzed copolymerization of ethylene with cyclic olefins such as norbornene, [2-5] cyclopentene, [4b,6-11] cyclohexene [12] attracts considerable attention. Although many examples were known for the ethylene/norbornene copolymerization using ordinary metallocenes, [2] linked half-titanocenes (so-called constrained geometry type), [3] unbridged half-titanocenes, [4] and other so-called non-metallocenes; [5] however, examples for the ethylene/cyclopentene copolymerization have been limited. [4b,6-11] Moreover, the resultant copolymers prepared by ordinary metallo-

cenes^[6] or late metal complexes^[11] possessed a mixture of 1,2- and 1,3-cyclopentene inserted units due to the tendency for favored β-hydrogen elimination-reinsertion after insertion. Recently, copolymerization with exclusive 1,2-cyclopentene insertion had been achieved by using half-titanocenes[4b,7] and others, [8-10] however, the activities were low [13] and/or the resultant copolymers possessed low molecular weights. [4b,7a] In this report, we present the unique example that half-titanocenes containing a ketimide ligand of the type, $Cp'TiCl_2[N=C(t-Bu)_2][Cp'=inden$ yl (1) Cp^* (2, $Cp^* = C_5Me_5$), t-Bu C_5H_4 (3), Cp (4, $Cp = C_5H_5$)] exhibit remarkably high activities for the ethylene/cyclopentene copolymerization with efficient exclusive 1,2-cyclopentene insertion, affording high molecular weight alternating copolymers with uniform distributions (Scheme 1).

Scheme 1.

Table 1. Copolymerization of ethylene with cyclopentene, norbornene, or cyclohexene by Cp'TiCl₂[N=C(t-Bu)₂] [Cp': indenyl (1) Cp* (2), t-BuC₅H₄ (3), Cp (4)]–MAO catalyst systems.^[a]

Run	Catalyst (µmol)	Cyclic olefin ^[b] (concentration)	Ethylene [atm]	Yield [mg]	Activity ^[c]	Cyclic olefin content ^[d] [mol%]	$M_{\rm n}^{\rm [e]} \ [\times 10^{-4}]$	$M_{ m w}/M_{ m n}^{ m [e]}$
1	1 (0.1)		4	122	7320	-	95.6	2.80
2	1 (0.1)	cyclopentene (1.0)	4	264	15800	7.5	29.1	2.48
3	1 (0.1)	cyclopentene (5.0)	4	480	28800	19.4	27.2	2.42
4 ^[f]	1 (0.1)	cyclopentene (5.0)	2	438	26300	32.9	24.7	2.03
5	2 (0.05)	-	4	88	10600	-	49.6	2.57
6	2 (0.03) 2 (0.1)	cyclopentene (1.0)	4	144	8640	1.1	43.1	2.05
7	2 (0.1) 2 (1.0)	cyclopentene (5.0)	4	264	1580	7.4	16.4	2.19
$8^{[f]}$	2 (1.0)	cyclopentene (5.0)	2	118	708	13.3	10.1	2.20
9	3 (0.05)	-	4	182	21800	-	52.2	2.66
10	3 (0.03) 3 (0.1)	cyclopentene (1.0)	4	455	27300	18.1	31.1	3.59
11	3 (0.1)	cyclopentene (5.0)	4	332	19900	35.1	23.4	3.29
12 ^[f]	3 (0.1)	cyclopentene (1.0)	2	527	31600	33.5	36.9	3.59
13 ^[f]	3 (0.1)	cyclopentene (5.0)	2	372	22600	43.6	13.4	1.69
14	4 (0.04)	cyclopentene (1.0)	4	99	14900	18.0	67.3	2.47
15 ^[f]	4 (1.0)	cyclopentene (2.5)	2	192	1150	41.3	16.9	1.97
16 ^[f]	4 (1.0)	cyclopentene (5.0)	2	151	906	43.1	17.6	2.01
17	1 (0.1)	norbornene (5.0)	4	166	9960	45.2	24.5	1.81
18 ^[f]	1 (0.1)	norbornene (5.0)	2	89	5340	62.1	15.2	2.26
19	2 (0.05)	norbornene (5.0)	4	63	7560	37.9	17.9	2.32
20 ^[f]	2 (0.03) 2 (1.0)	norbornene (5.0)	2	643	3860	41.4	12.7	2.13
21	3 (0.01)	norbornene (1.0)	4	114	68400	38.2	62.4	2.78
22	3 (0.01) 3 (0.1)	norbornene (5.0)	4	250	15000	52.7	17.5	2.05
23 ^[f]	3 (0.1)	norbornene (5.0)	2	83	4980	64.8	14.2	1.94
24 g]	4 (0.02)	norbornene (1.0)	4	134	40200	40.7	71.9	2.92
25 ^[f,g]	4 (0.02)	norbornene (2.5)	2	150	90000	58.8	32.3	2.09
26 ^[f,g]	4 (0.01)	norbornene (5.0)	2	143	85800	65.8	34.0	2.00
27 ^[f]	1 (0.51)	cyclohexene (5.0)	2	298	3576	none	17.4	2.80
28 ^[f]	2 (0.1)	cyclehexene (5.0)	2	83	4980	none	12.2	1.99
29 ^[f]	3 (0.1)	cyclohexene (5.0)	2	95	5700	none	12.2	2.48
30 ^[f,h]	` /	• • • • • • • • • • • • • • • • • • • •	2			0.3		
30[.,]	4 (1.0)	cyclohexene (5.0)	Z	324	1944	0.3	5.0	1.83

[[]a] Conditions: toluene + norbornene, cyclopentene or cyclohexene total 50 mL, d-MAO (prepared by removing AlMe₃ and toluene from PMAO) 3.0 mmol, ethylene 2 or 4 atm, 25 °C, 10 min.

Various half-titanocenes containing ketimide ligands of type Cp'TiCl₂[N=C(t-Bu)₂] [Cp'=indenyl (1) Cp* (2), t-BuC₅H₄ (3), Cp (4)], have been chosen, not only because 4 was quite effective for the ethylene/norbornene copolymerization, [4c] but also because that efficient catalyst precursors for other ethylene copolymerizations could be modified by the cyclopentadienyl fragments. [14-16] The results for the ethylene/cyclopentene copolymerization in toluene in the presence of MAO cocatalyst are summarized in Table 1. [17,18] Ethylene/norbornene copolymerizations using the same catalyst systems were also explored for comparison, and the results are summarized in Table 1. [17]

The Cp analogue (4) showed both notable catalytic activities and efficient norbornene incorporations in ethylene/norbornene copolymerization (runs 24–26), as reported previously, and the activity did not decrease even under high norbornene concentration (norbornene/ethylene feed) conditions (runs 25 and 26). In contrast, a significant decrease in the activity was observed upon increasing the cyclopentene concentration (initial cyclopentene/ethylene feed molar ratios) in the ethylene/cyclopentene copolymerization by 4 (runs 14–16), although 4 exhibited the notable activity with efficient cyclopentene incorporation under certain conditions (run 14). The activities by

[[]b] Cyclic olefin concentration charged in mmol mL⁻¹.

[[]c] Activity in kg polymer/mol Ti·h.

[[]d] Cyclic olefin (norbornene, cyclopentene, cyclohexene) content (mol%) estimated from NMR spectra.

[[]e] GPC data in o-dichlorobenzene vs. polystyrene standards.

[[]f] Conditions: toluene + cyclic olefin total 10 mL (instead of 50 mL).

[[]g] Cited from ref.[4c]

[[]h] Cited from ref.[12]

the Cp* analogue (2, runs 6–8) in the ethylene/cyclopentene copolymerizations were lower than those by the Cp analogue (4, runs 14–16), and the cyclopentene content in the copolymer was low even under high cyclopentene concentration conditions (13.3 mol %, run 8).

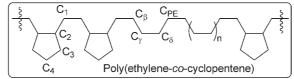
Note that both the indenyl analogue (1) and the t-BuC₅H₄ analogue (3) showed significant catalytic activities in the ethylene/cyclopentene copolymerization (runs 2-4, 10-13), and that significant decreases in the activities by 1 and 3 were not seen even under the high cyclopentene concentration (high initial cyclopentene/ethylene feed molar ratio) conditions (runs 3, 4, 11, 13). The resultant copolymers possessed high molecular weights with unimodal molecular weight distributions, and the $M_{\rm n}$ values for the copolymers decreased upon increasing the cyclopentene contents. The cyclopentene contents in the copolymers by 3 were higher than those by 1, and these results thus indicate that the t-BuC₅H₄ analogue (3) should be the most suited catalyst precursor for the ethylene/cyclopentene copolymerization in terms of both catalytic activity and cyclopentene incorporation.

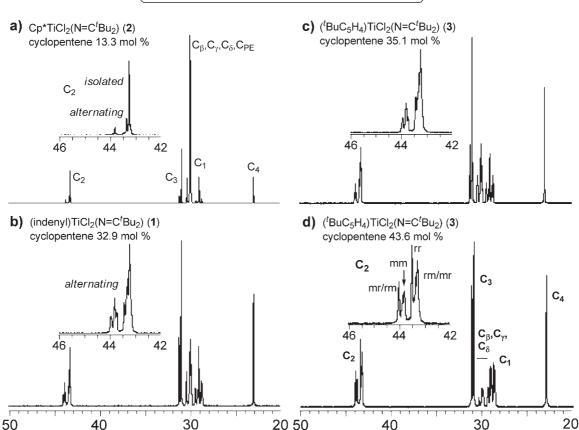
In contrast, the activities in the ethylene/norbornene copolymerizations by 1- and 3-MAO catalyst systems decreased upon increasing the norbornene concentration (initial norbornene/ethylene feed ratio, runs 17, 18, 21-23). The observed effect of substituents in the cyclopentadienyl group for the copolymerization between norbornene and cyclopentene should be promising because, as demonstrated previously in the ethylene copolymerizations using the Cp'-aryloxo analogues, [14] the results clearly demonstrate that the efficient catalyst precursors for the desired (co)polymerization can be tuned by modification of the cyclopentadienyl fragment. Copolymerizations of ethylene with cyclohexene by 1-4-MAO catalyst systems were also attempted, but the resultant polymers did not contain cyclohexene (or contained trace amounts of cyclohexene); no improvement in the cyclohexene incorporations could be achieved under these conditions (runs 27–30).

Figure 1 shows selected 13 C NMR spectra for the resultant poly(ethylene-co-cyclopentene)s prepared by the Cp'-ketimide analogue–MAO catalyst systems. $^{[17]}$ It is clear that cyclopentene was incorporated with the 1,2-insertion mode, and that no or negligible amounts of 1,3-inserted units which are observed in the copolymer using ordinary zirconocene catalysts $^{[6]}$ were seen. This fact clearly suggests that the cyclopentene incorporation took place in a regioselective manner as seen in some titanium complex catalysts, $^{[4b,7-9]}$ and this exclusive selectivity would be attributed to the lower tendency to undergo β -hydrogen elimination than those using zirconocene complex catalysts as proposed previously. $^{[7,8]}$ These microstructures possessed both isolated and alternating cyclo-

pentene sequences, and resonances ascribed to the repeated cyclopentene inserted units were not seen. Although the resultant poly(ethylene-co-cyclopentene)s have no stereoregularity (isotactic, syndiotactic etc.) in all cases, these results strongly suggest that efficient synthesis of alternating poly(ethylene-co-cyclopentene)s are possible in this catalysis.

We have shown that the (*t*-BuC₅H₄)TiCl₂[N=C(*t*-Bu)₂] (3)–MAO catalyst system exhibited remarkable catalytic activity with notable cyclopentene incorporation in the ethylene/cyclopentene copolymerization and both the activity as well as the cyclopentene incorporation were highly dependent upon the cyclopentadienyl fragment employed. A unique contrast concerning the ligand effect between the ethylene/NBE copolymerization and the ethylene/cyclopentene copolymerization was observed, and we believe that these results should be promising for designing efficient catalyst precursors for the efficient preparation of cyclic olefin copolymers.


Experimental Section


General Procedure

All experiments were carried out under a nitrogen atmosphere in a vacuum atmospheres drybox unless otherwise specified. Anhydrous grade toluene (Kanto Kagaku Co. Ltd) was transferred into a bottle containing molecular sieves (mixture of 3 Å and 4 Å 1/16, and $13 \times$) in the drybox, and was used without further purification. Ethylene was of polymerization grade (purity > 99.9%, Sumitomo Seika Co. Ltd) and was used as received. Cyclopentene of reagent grade (Aldrich) was stored in a bottle in the drybox in the presence of molecular sieves. Toluene and AlMe₃ in the commercially available methylaluminoxane [PMAO-S, 9.5 wt% (Al) toluene solution, Tosoh Finechem Co.] were removed under reduced pressure (at ca. 50°C for removing toluene, AlMe₃, and then heated at >100 °C for 1 h for completion) in the drybox to give white solids. Various half-titanocenes such as (indenyl)TiCl₂[N=C(t-Bu)₂] (1), [19] Cp*TiCl₂ $[N=C(t-Bu)_2]$ (2), [20] (t-BuC₅H₄)TiCl₂ $[N=C(t-Bu)_2]$ (3), [19]CpTiCl₂[N=C(t-Bu)₂] (4)^[20] were prepared according to the reported procedures.

Molecular weights and molecular weight distributions for polyethylene, poly(ethylene-co-norbornene)s, poly(ethylene-co-cyclopentene)s were measured by gel permeation chromatography (Tosoh HLC-8121GPC/HT) with a polystyrene gel column (TSK gel GMH_{HR}-H HT × 2, 30 cm × 7.8 mm ID), ranging from $<\!10^2$ to $<\!2.8\!\times\!10^8$ MW) at 140 °C using o-dichlorobenzene containing 0.05 wt/v % 2,6-di-tert-butyl-pcresol as eluent. The molecular weight was calculated by a standard procedure based on the calibration with standard polystyrene samples.

All ¹³C NMR spectra were recorded on a JEOL JNM-LA400 spectrometer (399.65 MHz, ¹H). All deuterated NMR solvents were stored over molecular sieves under a nitrogen atmosphere, and all chemical shifts are given in ppm and are referenced to Me₄Si. ¹³C NMR spectra for poly(eth-

Figure 1. ¹³C NMR spectra (in benzene- $d_6/1$,2,4-trichlorobenzene at 110 °C) for poly(ethylene-co-cyclopentene)s by Cp'TiCl₂[N=C(t-Bu)₂] [Cp'=indenyl (1), Cp* (2), and t-BuC₅H₄ (3)]–MAO catalyst systems. Poly(ethylene-co-cyclopentene)s prepared by (a) 2 (run 8), (b) 1 (run 4), (c) 3 (run 11), (d) 3 (run 13). Detailed polymerization results are shown in Table 1.

ylene-co-norbornene)s and poly(ethylene-co-cyclopentene)s were recorded on a JEOL JNM-LA400 spectrometer (100.40 MHz, $^{13}\mathrm{C}$) with proton decoupling. The pulse interval was 5.2 sec, the acquisition time was 0.8 sec, the pulse angle was 90°, and the number of transients accumulated was ca. 8000. The analysis samples were prepared by dissolving polymers in a mixed solution of 1,2,4-trichlorobenzene/benzene- d_6 (90/10 wt), and these spectra were measured at 110°C.

Copolymerization of Ethylene with Cyclic Olefins (Cyclopentene, Norbornene, Cyclohexene)

A typical procedure (Table 1, run 2) for ethylene/cyclopentene copolymerization was performed as follows: the prescribed amounts of toluene (44.58 mL), cyclopentene (50.0 mmol, 4.42 mL), d-MAO (174 mg, 3.0 mmol) were added into the autoclave (100 mL scale) in the drybox, and the apparatus was then purged with ethylene. The reaction

mixture was then pressurized to 3 atm (total ethylene 4 atm) soon after the addition of a toluene solution (1.0 mL) containing 1 (0.10 μmol). The mixture was magnetically stirred for 10 min, the ethylene remaining was purged after the reaction, and the mixture was then poured into EtOH (50 mL) containing HCl (5 mL). The resultant polymer was collected on a filter paper by filtration, and was adequately washed with EtOH, and was then dried under vacuum for several hours.

Experimental procedures for (attempted) copolymerization of ethylene with cyclohexene were the same as those for the ethylene/cyclopentene copolymerization except that cyclohexene was used in place of cyclopentene.

Experimental procedures for ethylene/norbornene copolymerization were also the same as those for the ethylene/cyclopentene copolymerization except that toluene (total 50.0 mL) and the prescribed amount of norbornene (50 mmol) were added into the autoclave (100 mL scale).

Supporting Information

 13 C NMR spectra (in benzene- $d_6/1,2,4$ -trichlorobenzene at $110\,^{\circ}$ C) for poly(ethylene-co-cyclopentene)s, poly(ethylene-co-norbornene)s prepared by Cp'TiCl₂[N=C(t-Bu)₂] [Cp'= indenyl (1) Cp* (2), t-BuC₅H₄ (3)]–MAO catalyst systems.

Acknowledgements

The present research is partly supported by Grant-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science (JSPS, No.18350055). K.N. expresses his thanks to Tosoh Finechem Co. for donating MAO (PMAO-S). J. L. expresses her thanks to JSPS for a postdoctoral fellowship (P05397).

References

- For example, a) W. Kaminsky, Angew. Makromol. Chem. 1994, 223, 101-120; b) H. Cherdron, M. J. Brekner, F. Osan, Angew. Makromol. Chem. 1994, 223, 121-133; c) W. Kaminsky, I. Beulich, M. Arndt-Rosenau, Macromol. Symp. 2001, 173, 211-225; d) for example: V. Dragutan, R. Streck, Catalytic Polymerization of Cycloolefins, Studies in Surface Science and Catalysis, Vol. 131, Elsevier, Amsterdam, 2000.
- [2] For example, a) D. Ruchatz, G. Fink, *Macromolecules* 1998, 31, 4669-4673; 1998, 31, 4674-4680; 1998, 31, 4681-4683; 1998, 31, 4684-4686; b) A. Provasoli, D. R. Ferro, I. Tritto, L. Boggioni, *Macromolecules* 1999, 32, 6697-6706; c) I. Tritto, C. Marestin, L. Boggioni, L. Zetta, A. Provasoli, D. R. Ferro, *Macromolecules* 2000, 33, 8931-8944; d) I. Tritto, C. Marestin, L. Boggioni, M. C. Sacchi, H.-H. Brintzinger, D. R. Ferro, *Macromolecules* 2001, 34, 5770-5777; e) I. Tritto, L. Boggioni, J. C. Jansen, K. Thorshaug, M. C. Sacchi, D. R. Ferro, *Macromolecules* 2002, 35, 616-623.
- [3] For example, a) B. A. Harrington, D. J. Crowther, J. Mol. Catal. A 1998, 128, 79–84; b) A. L. McKnight, R. M. Waymouth, Macromolecules 1999, 32, 2816–2825; c) K. Thorshaug, R. Mendichi, L. Boggioni, I. Tritto, S. Trinkle, C. Friedrich, R. Mülhaupt, Macromolecules 2002, 35, 2903–2911; d) T. Hasan, T. Ikeda, T. Shiono, Macromolecules 2004, 37, 8503–8509; e) T. Hasan, T. Ikeda, T. Shiono, Macromolecules 2005, 38, 1071–1074; f) Z. Cai, Y. Nakayama, T. Shiono, Macromolecules 2006, 39, 2031–2033.
- [4] a) K. Nomura, M. Tsubota, M. Fujiki, *Macromolecules* 2003, 36, 3797–3799; b) W. Wang, T. Tanaka, M. Tsubota, M. Fujiki, S. Yamanaka, K. Nomura, *Adv. Synth. Catal.* 2005, 347, 433–446; c) K. Nomura, W. Wang, M. Fujiki, J. Liu, *Chem. Commun.* 2006, 2659–2661; d) K. Nomura, Y. Yamada, W. Wang, J. Liu, *J. Organomet. Chem.* 2007, 692, 4675–4682.
- [5] a) P. Altamura, A. Grassi, Macromolecules 2001, 34, 9197–9200; b) Y. Yoshida, J. Saito, M. Mitani, Y. Takagi, S. Matsui, S. Ishii, T. Nakano, N. Kashiwa, T. Fujita, Chem. Commun. 2002, 1298–1299; c) Y. Yoshida, J. Mohri, S. Ishii, M. Mitani, J. Saito, S. Matsui, H.

- Makio, T. Nakano, H. Tanaka, M. Onda, Y. Yamamoto, A. Mizuno, T. Fujita, *J. Am. Chem. Soc.* **2004**, *126*, 12023–12032; d) X.-F. Li, K. Dai, W.-P. Ye, L. Pan, Y.-S. Li, *Organometallics* **2004**, *23*, 1223–1230.
- [6] a) W. Kaminsky, R. Spiehl, Makromol. Chem. Macromol. Chem. Phys. 1989, 190, 515-526; b) A. Jerschow, E. Ernst, W. Hermann, N. Müller, Macromolecules 1995, 28, 7095-7099; c) N. Naga, Y. Imanishi, Y. Macromol. Chem. Phys. 2002, 203, 159-165; d) N. Naga, J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 1285-1291.
- [7] a) A. R. Lavoie, M. H. Ho, R. M. Waymouth, *Chem. Commun.* 2003, 864–865; b) A. R. Lavoie, R. M. Waymouth, *Tetrahedron* 2004, 60, 7147–7155.
- [8] M. Fujita, G. W. Coates, Macromolecules 2002, 35, 9640–9647.
- [9] L.-M. Tang, Y.-Q. Duan, L. Pan, Y.-S. Li, J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 1681–1689.
- [10] D. A. Pennington, S. J. Coles, M. B. Hursthouse, M. Bochmann, S. J. Lancaster, *Macromol. Rapid Commun.* 2006, 27, 599-604.
- [11] S. J. McLain, J. Feldman, E. F. McCord, K. H. Gardner, M. F. Teasley, E. B. Coughlin, B. J. Sweetman, L. K. Johnson, M. Brookhart, *Macromolecules* 1998, 31, 6705–6707.
- [12] W. Wang, M. Fujiki, K. Nomura, J. Am. Chem. Soc. 2005, 127, 4582–4583.
- [13] For reported examples, the catalytic activities by $[Me_2Si(C_5Me_4)(N-t-Bu)]TiCl_2$ [Me₂Si(indenyl)(N-t-Bu) TiCl₂ or the related complexes (modified by Cp, indenyl fragment)-MMAO catalysts were 10-469 kg mol⁻¹ Ti·h (ethylene ca. 1 atm, toluene 5 mL, cyclopentene 15 mL)^[7]; the activities by bis(phenoxyimine)titanium complex-MAO catalysts < 49 kg mol⁻¹ Ti·h (ex. ethylene < 1 atm, toluene total 10–15 mL, cyclopentene 13.2 mL).^[8] The activities by [(Ph)NC(R²)CHC(R¹)O]₂TiCl $(R^1; R^2 = CF_3; CH_3,$ Ph;CF₃, t-Bu;CF₃)-MMAO catalysts were 38-310 kgpolymer/mol Ti·h (ex. ethylene 1 atm, cyclopentene 5.0 mmol mL⁻¹ in toluene).^[9] The activities by Ti{3-t-Bu-2-(O)C₆H₃CH = N(C₆F₅)}-{2-(C₆H₅NCH)C₄H₃N}-Cl₂-MAO catalyst were 260-1000 kg polymer/mol Ti·h (ex. ethylene 1 atm, cyclopentene 0.66–4.9 mmol mL⁻¹ in toluene);^[10] the activity decreased at higher cyclopentene concentration conditions and the molecular weight distributions for the polymers with high cyclopentene contents were broad $(M_{\rm w}/M_{\rm p}=3.6-4.5)$.
- [14] For review article, see: K. Nomura, J. Liu, S. Padmanabhan, B. Kitiyanan, *J. Mol. Catal. A* **2007**, 267, 1–29.
- [15] For the effect of the cyclopentadienyl ligand in ethylene/styrene copolymerization using a series of Cp'Ti-Cl₂(O-2,6-i-Pr₂C₆H₃)-MAO catalyst systems, see: K. Nomura, H. Okumura, T. Komatsu, N. Naga, *Macromolecules* 2002, 35, 5388-5395.
- [16] We did not choose the Cp'-aryloxo analogues, Cp'Ti-Cl₂(O-2,6-*i*-Pr₂C₆H₃), because these complexes–MAO catalyst systems afforded low molecular weight copolymers. Other ketimide analogues, CpTiCl₂[N=C(R¹)R²] (R¹,R²=*t*-Bu,Ph, Ph,Ph etc.), were not chosen, because these complexes showed low activities to afford polymers with broad molecular weight distributions. [4d]

- [17] ¹³C NMR spectra for poly(ethylene-co-norbornene)s, poly(ethylene-co-cyclopentene)s are shown in the Supporting Information.
- [18] In order to control the comonomer (norbornene, cyclopentene) conversion less than 10 mol %, these copolymerizations were terminated for 10 min (at the initial
- stage). As presented in ref.[4c] no notable decreases in the activities were seen even after 30 min.
- [19] K. Nomura, K. Fujita, M. Fujiki, J. Mol. Catal. A 2004, 220, 133-144.
- [20] S. Zhang, W. E. Piers, X. Gao, M. Parvez, J. Am. Chem. Soc. 2000, 122, 5499-5509.

2240

© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim